Lesson No.34

DOS Video Services

Services of DOS are more cooked and at a higher level than BIOS. They provide less control but make routine tasks much easier. Some important DOS services are listed below.

INT 21 - READ CHARACTER FROM STANDARD INPUT, WITH ECHO

AH = 01h

Return: AL = character read

INT 21 - WRITE STRING TO STANDARD OUTPUT

AH = 09h

DS:DX -> $ terminated string

INT 21 - BUFFERED INPUT

AH = 0Ah

DS:DX -> dos input buffer
The DOS input buffer has a special format where the first btye stores the maximum characters buffer can hold, the second byte holds the number of characters actually read on return, and the following space is used for the actual characters read. We start will an example of reading a string with service 1 and displaying it with service 9.
	
	Example 12.4

	001

002

003

004

005

006

007

008
009

010

011

012

013

014

015

016

017

018

019

020

021

022
023

024

025

026

027

028

029

030

031

032
	; character input using dos services
[org 0x0100]

 jmp start

maxlength: dw 80 ; maximum length of input
message: db 10, 13, 'hello $' ; greetings message
buffer: times 81 db 0 ; space for input string
start: mov cx, [maxlength] ; load maximum length in cx
 mov si, buffer ; point si to start of buffer
nextchar: mov ah, 1 ; service 1 – read character
 int 0x21 ; dos services

 cmp al, 13 ; is enter pressed
 je exit ; yes, leave input
 mov [si], al ; no, save this character
 inc si ; increment buffer pointer
 loop nextchar ; repeat for next input char
exit: mov byte [si], '$' ; append $ to user input
 mov dx, message ; greetings message
 mov ah, 9 ; service 9 – write string
 int 0x21 ; dos services
 mov dx, buffer ; user input buffer
 mov ah, 9 ; service 9 – write string
 int 0x21 ; dos services
 mov ax, 0x4c00 ; terminate program
 int 0x21

Our next example uses the more cooked buffered input service of DOS and using the same service 9 to print the string.

	
	Example 12.5

	001

002

003

004

005

006

007

008
009

010

011

012

013

014

015

016

017

018

019

020

021

022
023

024

025

026

027
	; buffer input using dos services
[org 0x0100]

 jmp start

message: db 10,13,'hello ', 10, 13, '$'

buffer: db 80 ; length of buffer
 db 0 ; number of character on return
 times 80 db 0 ; actual buffer space
start: mov dx, buffer ; input buffer
 mov ah, 0x0A ; service A – buffered input
 int 0x21 ; dos services
 mov bh, 0
 mov bl, [buffer+1] ; read actual size in bx
 mov byte [buffer+2+bx], '$' ; append $ to user input
 mov dx, message ; greetings message
 mov ah, 9 ; service 9 – write string
 int 0x21 ; dos services
 mov dx, buffer+2 ; user input buffer
 mov ah, 9 ; service 9 – write string
 int 0x21 ; dos services
 mov ax, 0x4c00 ; terminate program
 int 0x21

More detail of DOS and BIOS interrupts is available in the Ralph Brown Interrupt List.

Physical Formation

A floppy disk is a circular plate with a fine coating of magnetic material over it. The plate is enclosed in a plastic jacket which has a cover that can slide to expose the magnetic surface. The drive motor attaches itself to the central piece and rotatets the plate. Two heads on both sides can read the magnetically encoded data on the disk.

If the head is fixed and the motor rotates the disk the readable area on the disk surface forms a circle called a track. Head moved to the next step forms another track and so on. In hard disks the same structure is extended to a larger number of tracks and plates. The tracks are further cut vertically into sectors. This is a logical division of the area on the tracks. Each sector holds 512 bytes of data. A standard floppy disk has 80 tracks and 18 sectors per track with two heads, one on each side totallying to 2880 sectors or 1440 KB of data. Hard disks have varying number of heads and tracks pertaining to their different capacities.

[image: image1]
BIOS sees the disks as a combination of sectors, tracks, and heads, as a raw storage device without concern to whether it is reading a file or directory. BIOS provides the simplest and most powerful interface to the storage medium. However this raw storage is meaningless to the user who needs to store his files and organize them into directories. DOS builds a logical structure on this raw storage space to provide these abstractions. This logical formation is read and interpreted by DOS. If another file system is build on the same storage medium the interpretations change. Main units of the DOS structure are the boot sector in head 0, track 0, and sector 1, the first FAT starting from head 0, track 0, sector 2, the second copy of FAT starting from head 0, track 0, sector 11, and the root directory starting from head 1, track 0, sector 2. The area from head 0, track 1, sector 16 to head 1, track 79, sector 18 is used for storing the data of the files. Among this we will be exploring the directory structure further. The 32 sectors reserved for the root directory contain 512 directory entries. The format of a 32 byte directory entry is shown below.

+00 Filename (8 bytes)

+08 Extension (3 bytes)

+0B Flag Byte (1 byte)
+0C Reserved (1 byte)

+0D Creation Date/Time (5 bytes)

+12 Last Accessed Data (2 bytes)

+14 Starting Cluster High Word (2 bytes) for FAT32

+16 Time (2 bytes)

+18 Date (2 bytes)

+1A Starting Cluster Low Word (2 bytes)

+1C File Size (4 bytes)
